

CAR – TESTER

EMC-Test Equipment

for electrical installation of vehicles:

According to DIN/ISO 7637

Pulse	Waveform
#1	1/2000µs, 600V
#1a	3/2000µs, 600V
#1b	3/1000µs, 600V
#2	1/50µs, 600V
#3	5/150ns, 800V

 $Ri = 50\Omega$

#6 60/300μs, 400V

 $\mathbf{Ri} = 2\Omega/4\Omega/10\Omega/$

 20Ω or $30\Omega/50\Omega/90\Omega$

EMC test system designed for testing electromagnetic immunity of the electrical installation of vehicles and components against supply line transients.

The CAR-TESTER includes a set of pulse generators which supply the test pulses listed above, a trigger able power switch (to isolate the DC supply when testing with negative pulses) and the artificial network. A fast voltage probe, ratio 100:1, for capturing transient waveforms is also included.

CAR-TESTER features a microprocessor controlled user interface and display unit for ease of use. The microprocessor allows the user to either execute standard test routines, or a 'user defined' test sequence. The test parameters, which are shown on the built-in display, are easily adjusted by means of the rotary encoder. A standard parallel interface provides the ability to print a summary of the test parameters whilst testing is being carried out.

As well as manual control, the CAR-TESTER and all additional modules may be remotely controlled by a fibre optic computer interface. Software packages for generator control, documentation & test result evaluation are available.

The CAR-TESTER excels by its compact design, simple handling and precise reproducibility of test impulses. High-voltage switching is accomplished by means of a maintenance-free semiconductor switches.

TD-Kfz-31012006 - 1 - PAS 2500/GN/Kfz

Fax: +49 (0) 9942 / 90 20 77

Technical specification:

CAR-TESTER II

Micro processor control, LCD module	8*40 characters
Optical-interface for remote control of the generator	built-in
Parallel printer interface for on-line documentation	25-way 'D' connector
External trigger input	$10V$ at $1k\Omega$
Diagnostic input for monitoring of the test device	4 channels, 5V-Level
Connector for external safety interlock loop	$24V_{DC}$
and external red and green warning lamps according to VDE 0104	230V, 60W
Mains power	230V, 50Hz/60Hz
Dimensions : plug in unit, 7U, W * H * D	483mm*311mm*520mm
Weight	45kg

Power supply switch:

Max. Output current	$100A_{DC}$
Max. Reverse voltage	800V
Trigger-input, connectable to external modules	built-in

Artificial Network:

Nominal operating voltage	0V 58V
Series inductance	$5\mu H$, $100A_{DC}$
Load impedance	$0.1\mu F + 50\Omega$
Load resistor R _s , switch able	$10\Omega, 20\Omega, 40\Omega$
Connector for external load resistor, 2Ω	built-in

Measurement probe:

Impulse voltage divider $4.95k\Omega/50\Omega$ 100:1, $1kV_p$

Burst Designed for generation of test pulses #3a / #3b according to ISO 7637-2.3-2002 draft

Amplitude of burst output voltage	, adjustable	$\pm (25 \text{V} \dots 800 \text{V}) \pm 10\%$
Waveform	rise time, t _r	$5.0 \text{ns} \pm 30\%$
	pulse duration, t _d	$150 \text{ns} \pm 30\%$
Source resistance	R_{i}	50Ω
Polarity, switch able		pos./neg./alt
Pulse period	t ₁ , adjustable	1.0μs 1.0ms
Burst duration	t ₄ , adjustable	0.1ms 25ms
Burst period	t ₅ , adjustable	10ms 1000ms
Max. continuous burst frequency		20kHz

Surge Designed for generation of test pulses #1, #2 and #6 according ISO 7637-2.3-2002 draft

Charging voltage, adjustable

Max. stored energy Max. charging time

Polarity, switch able

Source resistance, switch able

Only with negative pulse polarity:

Power supply disconnection time, t₂

Trigger delay, t₃

PFN 1: Waveform 1/2000μs

Rise time, t_r Pulse duration, t_d

PFN 1a/b: Waveform 3/2000μs or 3/1000μs

Rise time, t_r Pulse duration, t_d

PFN 2: Waveform 1/50μs

Rise time, t_r Pulse duration, t_d

PFN 6: Waveform 60/300μs

Charging voltage, adjustable

Rise time, t_r Pulse duration, t_d $\pm (0V \dots 600V) \pm 10\%$

18Ws

0.5sec ... 5.0sec positive, negative

 2Ω , 4Ω , 10Ω , 20Ω or 30Ω ,

 50Ω and 90Ω

200ms ± 10% < 100µs

Pulse # 1

 $\begin{array}{l} 1.0\mu s + 0\mu s / - 0.5\mu s \\ 2000\mu s \pm 20\% \end{array}$

Puls # 1a, 1b

 $3.0\mu s + 0\mu s/-1.5\mu s$ $2000\mu s/1000\mu s \pm 20\%$

Puls # 2

 $1.0 \mu s + 0 \mu s / -0.5 \mu s$ $50 \mu s \pm 20 \%$

Puls # 6

 $\pm (0V \dots 400V) \pm 10\%$

 $60\mu s \pm 20\%$ $300\mu s \pm 20\%$

Transient Emission Test, Power Switch Transients, according to ISO 7637-1/2

Measurement of voltage and current transient while switching the power supply on and off.

Load resistor, switch able R_s Switch-off time, t_{off} , adjustable Switch-on time, t_{on} , adjustable Number of Pulses, adjustable 10Ω, 20Ω, 40Ω, ext. >2Ω 1 ... 1000s 1 ... 1000ms

1 ... 1000

TD-Kfz-31012006 - 4 - PAS 2500/GN/Kfz